Fatou–Bieberbach domain

In mathematics, a Fatou–Bieberbach domain is a proper subdomain of \mathbb{C}^n, biholomorphically equivalent to \mathbb{C}^n; i.e. one calls an open set \Omega \subset \mathbb{C}^n \; (\Omega \neq \mathbb{C}^n) a Fatou–Bieberbach domain if there exists a bijective holomorphic function f:\Omega \rightarrow \mathbb{C}^n and a holomorphic inverse function f^{-1}:\mathbb{C}^n \rightarrow \Omega.

History

As a consequence of the Riemann mapping theorem, there are no Fatou–Bieberbach domains in the case n = 1. Pierre Fatou and Ludwig Bieberbach first explored such domains in higher dimensions in the 1920s, hence the name given to them later. Since the 1980s, Fatou–Bieberbach domains have again become the subject of mathematical research.

References